Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0293605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939153

RESUMO

Vancomycin, is widely used against methicillin-resistant bacterial infections. However, Vancomycin accumulation causes nephrotoxicity which leads to an impairment in the filtration mechanisms of kidney. Traditional herbal medicines hold potential for treatment of drug-induced nephrotoxicity. Herein, we investigated protective properties of plant-based medicine Renogrit against Vancomycin-induced kidney injury. Phytometabolite analysis of Renogrit was performed by UHPLC. Spheroids formed from human proximal tubular cell (HK-2) were used for in vitro evaluation of Vancomycin-induced alterations in cell viability, P-gp functionality, NAG, KIM-1 levels, and mRNA expression of NGAL and MMP-7. The in vivo efficacy of Renogrit against Vancomycin-induced nephrotoxicity was further evaluated in Sprague-Dawley (SD) rats by measurement of BUN, serum creatinine, and their respective clearances. Moreover, eGFR, kidney-to-body weight ratio, GSH/GSSG ratio, KIM-1, NAG levels and mRNA expression of KIM-1 and osteopontin were also analyzed. Changes in histopathology of kidney and hematological parameters were also observed. Renogrit treatment led to an increase in cell viability, normalization of P-gp functionality, decrease in levels of NAG, KIM-1, and reduction in mRNA expression of NGAL and MMP-7. In Vancomycin-challenged SD rats, Renogrit treatment normalized altered kidney functions, histological, and hematological parameters. Our findings revealed that Renogrit holds a clinico-therapeutic potential for alleviating Vancomycin-associated nephrotoxicity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Vancomicina , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Creatinina , Metaloproteinase 7 da Matriz/metabolismo , Lipocalina-2/metabolismo , Nitrogênio da Ureia Sanguínea , Ureia/metabolismo , Rim/patologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , RNA Mensageiro/metabolismo , Biomarcadores
2.
Biomed Pharmacother ; 160: 114309, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709598

RESUMO

Atherosclerosis is the main pathological process of several cardiovascular diseases. It may begin early in life and stay latent and asymptomatic for an extended period before its clinical manifestation. The formation of foamy macrophages due to dysregulated lipid metabolism is a key event in the development and progression of atherosclerotic plaque. The current pharmacotherapy for atherosclerosis is not able to address multiple aetiologies associated with the disease. Lipidom, an herbal prescription medicine, has anti-oxidant, lipid lowering and anti-inflammatory properties that lead to multifaceted treatment benefits against chronic inflammation, dyslipidaemia, and oxidative stress. The present study aimed to characterize the pharmacological effects of Lipidom using various experimental models. The phytochemical analysis of Lipidom was performed on ultra-high performance liquid chromatography (UHPLC) platform. Lipidom was evaluated for cytosafety, IL-1ß and MCP-1 release, modulation of NLRP3 pathway, NFκB activity, ROS generation, lipid accumulation and gene expression in THP1 macrophages. Furthermore, Lipidom evaluation was also performed in the N2, CF1553, and TJ356 strains of Caenorhabditis elegans (C. elegans). The evaluation of brood size, adult (%), lipid accumulation, triglyceride levels, SOD-3 GFP signal, MDA formation, DAF-16 nuclear translocation, and gene expression was performed in C. elegans. Lipidom treatment significantly reduced the inflammatory mediators, lipid accumulation, oxidative stress, and normalized genes involved in the development of foamy macrophages. Lipidom treated C. elegans showed a significant decline in lipid accumulation and oxidative stress. Taken together, Lipidom treatment showed a multifaceted approach in the modulation of several mediators responsible for the development and progression of atherosclerotic plaque.


Assuntos
Aterosclerose , Plantas Medicinais , Placa Aterosclerótica , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aterosclerose/tratamento farmacológico , Caenorhabditis elegans , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Estresse Oxidativo , Plantas Medicinais/metabolismo , Lipidômica
3.
Front Endocrinol (Lausanne) ; 13: 1064532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545334

RESUMO

Background: The prevalence of diabetes has considerably increased in recent years. In the long run, use of dual therapy of anti-diabetic agents becomes mandatory to attain euglycemia. Also, the incidences of diabetes-related co-morbidities have warranted the search for new therapeutic approaches for the management of the disease. Traditional herbo-mineral, anti-diabetic agents like Madhugrit are often prescribed to mitigate diabetes and related complications. The present study aimed to thoroughly characterize the pharmacological applications of Madhugrit. Methods: Phytometabolite characterization of Madhugrit was performed by ultra-high performance liquid chromatography. Evaluation of cell viability, α-amylase inhibition, glucose uptake, inflammation, and wound healing was performed by in vitro model systems using AR42J, L6, THP1, HaCaT cells, and reporter cell lines namely NF-κB, TNF-α, and IL-1ß. The formation of advanced glycation end products was determined by cell-free assay. In addition, the therapeutic potential of Madhugrit was also analyzed in the in vivo Caenorhabditis elegans model system. Parameters like brood size, % curling, glucose and triglyceride accumulation, lipid deposition, ROS generation, and lipid peroxidation were determined under hyperglycemic conditions induced by the addition of supraphysiological glucose levels. Results: Madhugrit treatment significantly reduced the α-amylase release, enhanced glucose uptake, decreased AGEs formation, reduced differentiation of monocyte to macrophage, lowered the pro-inflammatory cytokine release, and enhanced wound healing in the in vitro hyperglycemic (glucose; 25 mM) conditions. In C. elegans stimulated with 100 mM glucose, Madhugrit (30 µg/ml) treatment normalized brood size, reduced curling behavior, decreased accumulation of glucose, triglycerides, and lowered oxidative stress. Conclusions: Madhugrit showed multimodal approaches in combating hyperglycemia and related complications due to the presence of anti-diabetic, anti-inflammatory, anti-oxidant, wound healing, and lipid-lowering phytoconstituents in its arsenal. The study warrants the translational use of Madhugrit as an effective medicine for diabetes and associated co-morbidities.


Assuntos
Caenorhabditis elegans , Hiperglicemia , Animais , Estresse Oxidativo , Antioxidantes/farmacologia , Glucose/farmacologia , Anti-Inflamatórios/farmacologia , Hiperglicemia/tratamento farmacológico , Triglicerídeos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...